SEARCH FINESCALE.COM

Enter keywords or a search phrase below:

Moebius' 1:72 Skipjack

31400 views
18 replies
1 rating 2 rating 3 rating 4 rating 5 rating
  • Member since
    March 2004
  • From: Spartanburg, SC
Posted by subfixer on Saturday, November 17, 2012 6:54 AM

HEY! What's with the crazy text above?? To quote Servilius Casca in Shakespeare's Julius Caesar ; "it was Greek to me"

Smile

I'm from the government and I'm here to help.

  • Member since
    September 2006
Posted by Fairseas on Friday, November 16, 2012 6:37 PM

Development of the Moebius Models 1/72 SKIPJACK Model Kit and its Conversion to R/C Operation, part-9

By David Meriman

A Report to the Cabal:

SAS Theory and Preparing to Outfit the Sub-Driver



R/c submarining -- above all other forms of r/c vehicle assembly, set-up, operation, and maintenance -- is the most demanding; it's an activity that requires investment of serious money, time, tools, and talent. And r/c model submarining is made an even more difficult to achieve pass-time owing to the limited availability of clean, easily accessible bodies of fresh, untreated water. Much to overcome if you are to enjoy this hobby.

The Sub-driver (SD) is a complicated system that is much easier to comprehend if you study the mechanisms and devices which make up the three major SD sub-systems: Propulsion; control; and ballast.

Endeavor to understand the HOW and WHY of sub-system function and you will come to know how the system achieves the tasks of keeping things dry, moving the submarine along, control, and how its weight is changed to float the boat or get it to submerge under the water.

First a little SAS theory, operation, and device description. Then, onto the nuts-and-bolts of turning devices (electrical and electronic items) and mechanisms (mechanical and plumbing items) into a coherent system.

SAS THEORY
The Semi-ASpirated (SAS) ballast sub-system works to manage ballast water by opening a servo actuated valve atop the ballast tank to let air out so water can flood in through openings in the bottom of the tank -- this is identical in form and function to our gas and snort ballast sub-systems of the past. However, the SAS differs from the previous ballast sub-systems in that it empties the ballast tank by discharging air -- either from atmosphere, through the snorkel head-valve, or scavenged from within the dry spaces of the SD -- into the ballast tank, forcing the ballast water out. With the exception of the snorkel assembly and the safety float-valve, the SAS plumbing (brass nipples, internal and external hoses, and external manifold) is arranged very much like the old snort ballast sub-system. The unique feature of SAS is its ability to empty a significant fraction of the ballast tank while operating submerged (to a depth no deeper than fifteen feet) without need of a dedicated liquefied gas source or space consuming bladder(s).

SAS OPERATION
Atop the snorkel assembly, mounted within the sail, a rubber disc, pushed up by a float, blocks the head-valve inlet nipple when water fills the inside of the sail. With no water buoying the float upwards (the model completely in surface trim or the sail broached), air is taken from atmosphere to empty the ballast tank: air passes down through the snorkel assemblies induction tube to a cast-resin 90-degree elbow fitting within the hull (equipped with an O-ring to insure a gas-tight seal between the lower portion of induction tube and elbow), to a length of flexible hose that runs to a manifold atop the SD, where another length of flexible hose runs aft to make up to a brass tube nipple at the motor-bulkhead, through an internal length of flexible hose into the suction side of the LPB or (through a T fitting in the flexible hose within the SD) to the dry spaces through the safety float-valve. All plumbing items between the snorkel head-valve and LPB inlet are elements of the induction line.

The LPB compresses the air and sends it, through a short length of flexible hose within the SD, a nipple on the motor-bulkhead, where another external length of flexible hose makes up to a nipple on the manifold, and from there the compressed air is discharged into the top of the ballast tank, pushing the ballast water out. All plumbing items between the manifold and LPB outlet are elements of the discharge line.

Normally, the safety float-valve permits air to enter or leave the SD's dry space through the open snorkel, or pass air from within the SD to the LPB when that device is running and the snorkel head-valve is shut. The safety float-valve is a back-up: Should the snorkel head-valve fail, or a leak occur anywhere along the induction line, the safety float-valve will close, blocking water in the flooded induction line from getting into the SD dry spaces.

THE R/C SYSTEM
The r/c system, in the face of industry change-over to systems working on the 2.4gHz band, is worthy of discussion: Radio waves in the 27, 40, 72, 75mHz, and near-by bands have no problem punching through fresh water. However, hobby r/c transmitter manufacturers today have transitioned almost exclusively to systems that operate way up there on the 2.4gHz band. Unfortunately (and why micro-wave ovens blast food at this frequency) 2.4gHz is the full-tone resonate frequency of water molecules. The newer r/c systems send and receive a signal modulated to a carrier wave that won't penetrate water!

The 2.4gHz r/c systems are totally unsuitable for use by vehicles operating under water. Fortunately, as most r/c system manufacturers are converting exclusively to 2.4gHz, Caswell Inc. has entered into an agreement with the WFly company to continue production of r/c transmitters on the traditional lower frequency bands. Today, with the departure of Polk's from the r/c system scene, we, along with Futaba (their F-14 and F-16 series of marine friendly r/c systems), are just about your only source for r/c transmitters and receivers on bands that can send a signal through the water.

Now, a look at the many electrical and electronic devices that fit into the SD; what they do, and how they interrelate to one another:

WFLY-8 TRANSMITTER A fast, highly maneuverable submarine like the SKIPJACK demands use of a 'computer' type transmitter, one with the ability to set the end-points (maximum deflection of control surfaces and top/low-end of throttle commands), permit stick mixing to coordinate turning-diving maneuvers, servo reversing, stick and switch re-assignment, and hold your changes in memory, for a specific model -- things the old, basic four or six-channel r/c transmitter can't do. The WFly-8 transmitter is what you need.

Another feature of this transmitter is the removable RF module which can be swapped out for an RF module of the synthetic crystal type which would permit quick, assured frequency changes at the field.

SOMBRA LABS SL-8 RECEIVER Caswell-Merriman advocates the purchase and use of either the Sombra Labs crystal controlled Lepton-6, or synthetic crystal (programmable to any channel on the 72-75mH bands) because of the magnificent selectivity of these receivers -- their ability to ignore all the interfering electrical noise present in the tight confines of a SD. The inverse square law applies to signal/noise strength between the receiver and signal/noise sources; the closer the receiver to the noise sources, the more overpowering the noise over the signal being detected. Only the Sombra Labs receivers have proven to be nearly noise-proof in these applications. Because of their selectivity, and other features, the Sombra Labs receivers are recommended for the entire line of Caswell-Merriman SD's.

MPC-LPB (provided) The air pump used to push air into the ballast tank is, in this application, called a low pressure blower (LPB), attached to the motor can of that unit is an electronic switch, or motor pump-controller (MPC). The device comes installed and tested with the SD. The power leads from the MPC are wired to the battery power cable and the lead plugs into one of the two outlet ports of the Y lead that originates from the ADF fail-safe circuit.

VENT SERVO (provided) This micro-size servo, provided and set into the dry side of the after ballast bulkhead, operates the linkage within the ballast tank that opens and closes the ballast tank vent valve. The servo plugs into the second output leg of the Y lead coming from the ADF's fail-safe circuit.

ADF Designed and produced by Kevin McLeod, the ADF is a combination of two circuits vital to the operation of an r/c model submarine. One circuit is an angle-keeper that plugs in between the receiver and stern plane servo -- it senses angular displacement about the pitch axis and sends corrective signals to the stern plane servo. The other circuit, a 'fail-safe' which generates a 'blow' command to the vent valve servo and motor pump controller of the LPB should either battery voltage drop to a critical value (what the Lipo-Guard does) or should the transmitted signal be lost -- either situation results in positioning of the vent valve to shut, and the LPB on to pump air into the ballast tank, surfacing the boat. The angle-keeper circuits input comes from the receivers channel-6 port. The fail-safe circuits input comes from the output side of the Lipo-Guard.

LIPO-GUARD When using the Lithium-polymer battery provision has to be made to detect the low voltage point below which permanent battery damage occurs. The Lipo-guard not only detects that critical voltage, but works to interrupt the signal to the fail-safe when that happens, causing the fail-safe circuit to command the ballast-sub system to cycle to the 'blow' condition, surfacing the boat. And the Lipo-Guard will not permit re-setting until the battery voltage is raised above the critical voltage, the consequence of a battery change. The input side of the Lipo-guard plugs into the channel-4 port of the receiver. The Lipo-Guard's two voltage sensing wires hook up directly to the battery power cables.

HIGH CAPACITY BEC A dedicated voltage-regulator that drops the battery voltage to the 5-volts needed by the receiver and devices that feed off the receiver bus through their respective leads is needed do to the high load on the bus by so many devices. The recommended high capacity BEC produces up to 5-Ampere's of current to power the SD devices. Much more than the typical ESC's BEC. The high capacity BEC outputs into any unused channel port of the receiver.

STERN PLANE SERVO One of the three mini sized servos screwed onto the resin servo rails. Through its pushrod this servo operates the models stern planes. The lead from this servo plugs into the output side of the ADF's angle-keeper circuit.

RUDDER SERVO This mini servo operates the rudder linkage. This servo lead plugs directly into the channel-1 receiver port.

SAIL-PLANE SERVO This mini servo operates the sail plane linkage. It plugs into the channel-2 port of the receiver.

ESC The recommended electronic speed controller (ESC) is the MTronik's Marine-15. This programmable speed controller is compact, reliable, and completely waterproof. It's input power wires make up directly to the power cables, and the lead plugs directly into the channel-3 port of the receiver (after disconnecting the leads red wire from the plug -- more on that later).

And the non-electrical mechanisms associated with the SAS ballast sub-system. These items arrive installed and tested:

SNORKEL ASSEMBLY This item comes with the 3.5 SKIPJACK SD and is detailed later on. A key element to the SAS ballast sub-system in that it works to block off water from getting into the induction line once the sail dunks underwater, and opens again when the sail broaches the surface. When the snorkel head-valve shuts, the LPB is forced to draw air from within the SD's interior.

SAFETY FLOAT-VALVE This float operated valve steps in to isolate the SD's interior from flooding should water get into the induction line.

FOUR-POINT MANIFOLD A cast resin manifold where the snorkel, and some of the discharge and induction flexible hose elements gather at a centralized point atop the SD cylinder. The manifold is where discharge air enters the ballast tank.

VENT VALVE This servo actuated valve dumps the air within the ballast tank when the command is given to flood. At all other times the vent valve is in the closed position.



Above is pictured a stock 3.5 SKIPJACK Sub-driver, next to a Scale Shipyard 1/72 SKIPJACK -- a model I've been operating for over ten years, used as a test-mule to evaluate SD systems. The SD arrives to the customer with all propulsion and SAS sub-system hardware installed and tested. It' up to the customer to purchase, install and set-up the needed devices to get it operational.

The SKIPJACK SD is a 21" long, 3.5" diameter, 1/8" thick clear Lexan cylinder divided into three spaces by two internal ballast bulkheads and a removable bulkhead at either end. The ballast tank is sized to get the submerged model to the surface and to float there at the SKIPJACK's designed water line.

The SD comes with snorkel assembly and all plumbing required to interface the SD's SAS sub-system with the model proper. It arrives with an installed and tested LPB with attached motor pump controller (MPC); installed 555 size 12-volt motor geared 3:1; and installed ballast sub-system servo and linkage.



I've omitted the servo actuated ballast tank vent valve for clarity. This is the arrangement of the SAS components and plumbing, within and outside the SD

1. Snorkel Assembly -- a float operated head-valve works to isolate the induction line from atmosphere when the sail of the model submarine submerges. The snorkel portion of the induction line connects with the safety float-valve portion, both of which can dump air -- from the surface or from the SD -- into the low pressure blowers.

2. Safety Float-Valve -- a float operated valve which works to isolate the SD's interior from a flooded induction line.

3. Low Pressure Blower -- a diaphragm, positive displacement type pump that normally compresses air, but will move water without damage. It is the same unit used in our snort configured 3.5 SD's. The LPB's job is to send air, regardless of source, into the ballast tank.



And here's the practical installation aboard a 3.5 SKIPJACK SD. We're looking at the underside of the aluminum motor bulkhead device tray. The cast resin motor bulkhead to which all devices -- with the exception of the ballast sub-system servo -- are attached is to the extreme left. The suction side of the blue LPB pump connects, through flexible hoses, to the induction side of the SAS plumbing. The LPB can either take air from within the SD through the safety float-valve (that copper thing near the motor-bulkhead), or air from atmosphere through the snorkel head-valve up in the model submarines sail. The discharge side of the pump leads to the ballast tank.



The safety float valve, as long as no water gets into it, permits air from the induction line to either enter or be pulled from the dry spaces within the SD. Atop the float a rubber element blocks the inlet/outlet nipple should water get into the valve body. It's the job of the safety float-valve to isolate the interior of the SD from the induction line should the induction line flood.



The snorkel assembly (which is provided with the 3.5 SKIPJACK SD) fits atop the SKIPJACK's hull and under the removable sail structure. This mechanism permits surface air to be pumped through the LPB into the ballast tank, blowing it dry. However, should the snorkel head-valve be shut (underwater) the LPB will scavenge air from within the SD, enough to displace a significant fraction of the ballast tanks water before pump back-pressure (dropped pressure within the SD) is enough to distort the pumps flexible bellows to the point where they no longer can push air into the discharge line.



The snorkel assembly mounted atop the hull is protected by the free-flooding, removable sail structure. It is vital that the float be unobstructed, free to rise and fall along the brass induction tube. When buoyed up, the rubber element, atop the float, blocks the inlet nipple of the head-valve. All unions -- from the head-valve down to the motor-bulkhead nipple -- have to be tight or they become water entry points, resulting in flooding of the induction line. If the SAS sub-system can be said to have an Achilles heel, then that failure point is somewhere along the induction line external of the SD's interior.



... And this is what makes the hobby of r/c model submarines so damned expensive: the Sub-driver itself and all the devices needed to power, control, and change the weight of the boat. Not just the typical r/c devices like servos, receiver, battery, ESC and the like. But, highly specialized devices: the Lipo-Guard, MPC. ADF and SL-8 receiver. Very specialized items, produced in limited quantity, hence expensive to produce and market. We pay a premium for the ability to operate our craft beneath the waters surface.

Above are most of the devices you'll need, all of them available from Caswell Inc. http://www.sub-driver.com/

1. 32000, 11.1-volt Lithium-polymer battery. Two of these are required, wired in parallel they provide enough capacity to run your 1/72 SKIPJACK all afternoon long.

2. Two sets of the Dean's connectors to make up the battery to your power cables, and to make up the motor-bulkhead devices to the other end of the power cable.

3. 10-ampere, DTSP toggle-switch and watertight boot

4. Optional 15A quick-blow fuse and fuse holder

5. 5-volt, 5-ampere battery eliminator circuit (BEC)

6. Sombra Labs SL-8 synthetic crystal receiver

7. MTronik's Marine-15 ESC

8. ADF, combined angle-keeper and fail-safe circuits

9. Lipo-Guard, to protect the Lithium-polymer battery against low voltage

10. Three mini-sized servos

11. Y type servo lead, to split and send the signal from the channel-4 receiver output to the LPB's motor pump controller (MPC) and ballast sub-system vent servo.



Four of the devices within the SD require hook-up to the battery directly, all wired in parallel to a common Dean's type plug that will mate with the plug made up to the power cables.

The four devices take battery power for the following services: send power directly to the propulsion motor after conversion to the correct polarity and amplitude (ESC); to sense battery voltage (Lipo-Guard), to protect the Lithium-polymer battery; to power the LPB's motor through the attached MPC; or to produce a regulated 5-volts required by the other devices (BEC), and do so at a much higher current draw than possible from the ESC's voltage regulator. With the exception of the BEC the devices connect, directly, or through one or more devices, to the receiver from which the intelligence you provide at the transmitter is conveyed.

On the left side of the devices pictured above is the power cable which originates in the forward dry space where its Dean's plug makes up to the battery, through a series wired mission-switch, to an optional fuse, where the cable then runs through the brass tube conduit through the ballast tank, into the forward dry space where another Dean's plug makes up and delivers battery power to the four devices, all wired in parallel with they're common plug.

The toggle of the mission-switch projects to the wet-side of the forward bulkhead and is made watertight with a flexible rubber boot.



This is how all the devices that mount onto the motor-bulkhead are hooked up to the receiver, either directly, or through other devices. The rudder (channel-1), sail plane (channel-2), and ESC (channel-3) plug directly into their respective receiver ports. The BEC also plugs into an unused receiver port, but only to apply power to the receiver bus, off of which the other devices draw their current. The receiver channel-6 port accept the lead from the angle-keeper side of the ADF, and from the ADF to the stern plane servo, the upper most servo seen above.

The receivers channel-4 port is for control of the SAS devices, and is deserved of a bit more discussion. The Lipo-guard plugs directly into this port. The Lipo-guard is directly connected to the battery cable, through which it monitors battery voltage. It's the job of the Lipo-Guard to drop the transmitted channel-4 signal -- simulating a 'loss of signal' condition should battery voltage drop to the critical level. When the Lipo-Guard drops the signal, the ADF's fail-safe circuit, which is next in line, takes its appropriate action which is to generate the pulse-length required to start put the ballast sub-system to the 'blow' condition, surfacing the boat. So, the devices connected to the receiver channel-4 port go like this, from the receiver: Lipo-Guard; fail-safe side of the ADF device; a Y lead to split the signal and send it along to the MPC of the LPB, and the ballast sub-system servo. Near the top of the above photo you see the Y lead feeding the ballast sub-system servo and MPC.

Four devices have to be hard-wired into the battery cable: the MPC (power to the pump as directed by the MPC); Lipo-Guard (voltage sensing); ESC (chopped current of appropriate polarity and amplitude sent to the propulsion motor); BEC (regulated voltage of a relatively high current rating to the receiver bus where the other devices draw their power).

Most, but not all devices have two sides to them: the receiver side, and the battery side. Observe correct polarity when you hook things up, or the magic smoke will be loosed.



Today's ESC's usually contain a low current BEC within them, but only rated for a maximum continuous current draw of 1.5 Ampere's. That's fine for what a reversible ESC's BEC is tasked to do for most model cars and boats: provide 5-volt power to just the receiver and one or maybe two servos -- in that case, 1.5-ampere's is plenty of capacity. But, in an r/c submarine, where as many as TEN devices are sucking off the receiver bus ... well, that's way too much of a load for the ESC's BEC. In a model submarine, even in the idling condition, the current passing through the receivers PC's foil is over 2-ampere's! When the servos are at work and pushing against a load (those watertight seals!), the total current draw of the system can spike system current draw to nearly 5-ampere's! Hence the need for a dedicated, high current BEC.

However, using a separate BEC, requires disablement of the ESC's BEC to prevent interaction between the two BEC's, sending transients along the receiver bus, potentially glitching the system. Disable the ESC's BEC by pulling the red-wire pin out of the J-connect at the end of the ESC's servo lead. Fold the metal pin back on the red wire, slip on a length of heat-shrink tube, and shrink it down with a hot-air gun this to insure you don't short the bare 'hot' pin against any system ground.
  • Member since
    September 2006
Posted by Fairseas on Sunday, November 11, 2012 9:51 PM

Development of the Moebius Models 1/72 SKIPJACK Model Kit and its Conversion to R/C Operation, part-8

By David Meriman

A Report to the Cabal:

Securing the Internal Hardware and Structures



If I gave the impression in a previous installment of this article that the lower bow piece could be installed to the upper hull half before installation of the torpedo tube nest assembly (the three piece structure comprising nest transverse bulkhead-F, nest keel piece-G, and torpedo muzzle bulkhead-I), I was mistaken. The nest assembly must first be assembled, CA'ed within the forward hull piece, and only then can the forward hull piece be glued to the upper hull half. I want to get the chronology straight before someone paints themselves into a corner.

At this point most of the major assembly chores have been done. All that is left is to screw the three pieces of the torpedo nest assembly together, glue it into the lower hull section (the one sawed off from the lower hull); mount that bow piece under the forward end of the upper hull; make up the securing screws to the SD shock-absorber and strap foundation; and test fit the SAS snorkel assembly (if used).



Note here the two round-head 4-40 machine screws that run up from inside the upper hull, through the base of the sail, and into the thread of the sail foundations. This is how the sail is pulled down securely upon the hull.

I've made up the sail plane pushrod to demonstrate how its magnet engages the magnet partially encapsulated within the resin arm of the lower sail plane bell-crank. The short length of tube extending into the hull projects into and made tights by the elbows O-ring. The elbow unit in foreground shows off this sealing O-ring.

The 90-degree elbow fitting that makes up to the induction tube permits the rather stiff 'flexible' induction hose to make up to the manifold atop the SD without getting in the way of the sail plane pushrod. The elbow accepts, through its watertight O-ring, the projecting induction tube, the body of the elbow rests up against the top of the hull where it is slathered with RTV adhesive to hold it in place, as you see in the elbow glued within the top of the upper hull. This permits removal of the entire snorkel assembly for maintenance, yet assures watertight integrity of the snorkel assembly when reinstalled.



The reason for making the sail removable is to afford access to the hull mounted semi-aspirated (SAS) Sub-driver ballast sub-system snorkel assembly, as well as to adjust the sail planes if needed. The snorkel assembly comes with the Sub-driver SD.

The reason I had you assemble the two sail halves together, but not the top of the sail, was to permit viewing through the open top of the sail as you check the snorkel float free to run the 1/4" or so vertically without rubbing up against the inside walls of the sail. Once satisfied that all is well within, the sail is taken off the hull, and the top piece glued in place with thin formula solvent cement.



Before running through the screw fasteners through the bottom of the hull -- to make mast the SD shock-absorber and strap foundation -- I beveled the outside of the holes to counter-sink the flat-head screws. Use a variable speed drill here, and keeping the speed slow insured the plastic did not melt and make a mess of things. The only special consideration when working polystyrene with power tools is to use a sharp bit, keep the speed low, and go real easy on the feed rate.



The job of the SD shock-absorber is to dissipate collision energy through physical displacement of the SD within the hull. So doing, the shock-absorber enhances the models ability to avoid handling and running damage, damage that often manifests as shearing of the SD indexing pin or crushing of the models bow when you experience the inevitable 'hard knock' against pool side or collision with an advisory. The SKIJACK is a feast boat, and there will be occasions when you're driving so fast that the boat gets ahead of your reflexes or ability to back-down in time to prevent a 'bump'.

The shock-absorber works like this: If a knock is of sufficient force to move the SD longitudinally within the hull, a spring within the shock-absorber is compressed, as the mass of the SD sends it sliding forward within the hull. The spring quickly returns the SD back into position -- the event may cause the the drive-shaft and control surface magnetic links to part, but you will have avoided significant damage to the models hull, indexing pin, or SD. A shock-absorber is recommended for all models employing 3.5 sized SD's and up.

Once I ran the securing screws through the hull and foundation of the SD shock-absorber I ran down the 2-56 nuts and tightened them. A drop of CA over each nut keeps them from vibrating loose. CA was then smeared around the base of the shock-absorber where it meets the hull.



The torpedo nest assemblies primary job is to stiffen the bow of the SKIPJACK against handling and collision damage.

Keep in mind that the Moebius Models 1/72 SKIPJACK model kit is principally made of so-called 'high-impact' polystyrene. A plastic that has nowhere the strength and shock resistance of glass reinforced plastic (GRP), today's preferred substrate for model ships and submarines. Hence the inclusion of the torpedo nest assembly, which, only incidentally, can serve as a foundation for a nest of practical torpedo tubes.

The only 'optional' item supplied in the fittings kit is the torpedo tube nest foundation (torpedo tube foundation-H) -- most of you will toss that part into the trash, but it's included in the kit for you meat-eaters. (Sorry, Norbert ... I read your book, you magnificent so-and-so!).

In the picture above a nest of six 1/72 torpedo tubes, secured within the nest foundation, all sit secure and in proper registration atop the keel piece. The muzzle ends of the tubes project into and are held in alignment by the torpedo muzzle bulkhead. I realize most of you will not opt for the weapons system, this is just some eye-candy for you; a suggestion of what can be done with r/c model submarines today.



The three pieces that make up the nest assembly attached together with the aid of four 2-56 round-head machine screws. A quick and easy means to insure that the torpedo muzzle bulkhead and nest transverse bulkhead fit perpendicular to the nest keel piece is to lay the assembly over some graph-paper and eye-ball it. Block sand the forward or after keel edge to eliminate any cant that produces a fit that is not perpendicular. Once you have the three pieces of the nest assembly straight, hit their joints with thin formula CA adhesive, and spritz on some accelerator.



Within the lower hull will be mounted this three-piece nest assembly. It's primary job is to stiffen the forward hull against impact and torsional forces. The secondary function of the nest assembly is to serve as a foundation for the removable torpedo tube nest, should you elect to make the SKIPJACK model a torpedo shooter.

With a hard sanding block sand the nest assembly contact surfaces with #240, this to provide some tooth, then attach the three pieces together with the provided screws.

Note how the bottom edge of the longitudinally running keel piece indexes with the anchor well and frame that projects up from the bottom of the forward hull piece -- it insures that you get the nest assembly to sit the correct distance from the front of the boat. The only thing you can screw up is the nest assemblies radial orientation within the hull, and two engraved lines, one either side of muzzle bulkhead will help you to get that right as well.



As you test fit the nest assembly into the lower bow piece you mark off the contact points between within the hull with a pencil or pen. Remove the next assembly and rough up the contact areas with #240 sandpaper. Don't forget to do the same for the upper hull half, where the torpedo muzzle bulkhead will make contact in that section.

If you are going to equip your SKIPJACK with a practical weapon system, now is the time -- before installing the nest assembly -- to grind and file open the torpedo shutter doors.



Molded into the sides of the torpedo muzzle bulkhead are engraved longitudinal lines to guide you as you register the nest assembly to the lower hull piece. When lining up the assembly you rotated it until the two engraved lines fall along the edge within the bow piece -- the attached keel and bulkheads follow as proper radial alignment is achieved. Pressing the assembly down tight into the lower hull, tack-glue it to the hull with staggered dabs of thin formula CA. Release the pressure, then check again for proper alignment, and once happy with things, lay on thick formula CA along all contact points and let it soak in and harden. Don't spritz the still wet adhesive with accelerator -- you want complete penetration of the adhesive, to get it between all resin and styrene surfaces. Leave the CA to cure naturally.



If you wish to equip your 1/72 SKIPJACK with teeth, I recommend the Caswell-Meriman weapon system. Each weapon system package contains one launcher (which can be configured for either mechanical or pneumatic actuation) and three gas propelled torpedoes/weapons. http://www.sub-driver.com/torpedo-systems.html

The fittings kit supplied nest foundation (torpedo tube foundation-H) is optional and is only used if you opt to include the ability to launch weapons. The nest foundation assembly -- in addition to its primary job of stiffening the bow -- is designed to accept and hold in perfect registrations the removable torpedo tube nest.

This picture shows to good advantage how the lower edge of the keep piece indexes the nest assembly longitudinally by engaging the forward frame and raised anchor well. Note that in this shot, the bow portion of the lower hull half has not yet been razor sawed away.



Time to glue the forward lower bow piece to the upper hull half. Note the pencil mark near the inboard and outboard edge of the upper hull -- marked off to indicate where to stop brushing on the thin solvent cement used to soften up both the upper hull matting edge and lower bow section mating edge. Once you get the mating edges gooey (it's a proper word ... look it up, damit!) the two pieces are assembled, more thin solvent cement was run into the seam where capillary action pulled it into the gap and the two pieces start to fuse together. To insure a tight seal, rubber-bands are wrapped around the assembly.



The inset flat heads of the shock-absorber and strap foundation screws on the bottom of the hull need to be secured permanently and faired to conform with the hull. A drop of thin CA adhesive is dabbed onto each screw head and left to soak in about a minute, followed by a sprinkling of baking soda which wicks up the adhesive and immediately cures to a solid -- an instant, hard filler ready for filing. The CA-baking soda filler is worked with file to conform to the curvature of the hull.

Note the CA work-station-caddy I've cut from a hunk of foam sheet -- keeps all CA adhesives, accelerator, glue mixing cups and open tray of backing soda handy for quick and easy use. When a CA gluing job calls for a mixture not too thin, but not too thick, I'll mix a bit of thick and thin CA into a cup and use a stick or rod (such as above) to transfer the adhesive to the work.
  • Member since
    September 2006
Posted by Fairseas on Sunday, November 11, 2012 9:49 PM

Development of the Moebius Models 1/72 SKIPJACK Model Kit and its Conversion to R/C Operation, part-7

By David Meriman

A Report to the Cabal:

Bonding the Sail and Hull, Installing the Sail Linkage, and Attaching the Radial Flanges



Now we're on a roll: actual bonding of the major sub-assemblies into proper hull halves, assembled sail, and establishment of the means of securing the two hull halves so that access to its interior is assured and easy.

From this point, to improve the clarity of the discussion, I'm going to refer to the fittings kit parts by both the noun-name and letter identifier pictured in part-4 of this Cabal Report.

Hull quarter assembly is a departure from what the kit supplied instructions advocate. Remember, the kit, as packaged, is intended to be assembled by average hobbyist into a seamless, non-functioning, static display model. However, as an r/c submarine, we need access to both the hull and sails interiors; we have to take measures that permits access those spaces. So, what I describe below is the creation of upper and lower hull assemblies that can be opened up to access the interior of the hull, and the devices mounted on the hull but contained within the sail.

Access to the interior of the hull is through the equatorially split upper and lower halves. At the stern and bow the longitudinal break transitions to a radial break at the lower bow and upper stern. The radial flange forward draws the hull halves together forward, and a single machine screw, running through the after radial flange, compresses the hull halves at the stern.

  
The forward and after lower hull quarters are welded together using solvent type cement. As you can see, the two hull quarters are mounted on a flat board to insure that their edges fall along the same plane. Note that a rubber band is used to push the after end of the forward quarter down hard onto the radial flange of the after quarter.

Just as in metal welding, which involves pre-heating of the weld area, the contact areas of the plastic to be bonded is treated to make it receptive to deep fusion once the state change is effected to the parts being joined. Before assembly, the radial flange of the lower after quarter and mating surface of the forward lower quarter are soaked in the very thin solvent cement to soften those surfaces. Then, quickly, the gelled solvent cement is beaded onto the flange and the two hull quarters assembled on the flat board, the rubber band made up, and the work left for twelve-hours to harden.



Once the center, radial union between the two lower hull quarters has hardened, the assembled lower hull is taken off the board, inverted, and the two upper hull quarters are set upon it -- a test dry-fit. any sprue left at the equatorial separation line between the lower hull and two upper hull quarts is identified and cut and filed back till a tight fit between the three hull pieces is achieved.

Take things apart, insert two slivers of wax-paper onto the edge of the lower hull over the radial joint -- this to prevent any adhesive that runs down from the upper hull pieces from getting onto the lower hull piece. Don't worry, if you keep the wax-paper slivers small enough they will conform to the tongue-in-groove union enough so as to not distort the fit between the three hull pieces too much. Or, you can wax the edges. Your call.

Lay the after upper hull quarter down, get it to register with the lower hull and hold the assembly together with rubber bands. Soften the flange of that piece and corresponding inside surface of the forward upper hull quarter with brushed on thin solvent cement, then smear on beads of gelled cement to the surface of the flange and quickly position the forward upper hull quarter atop the lower hull and make the assembly fast with rubber bands. Leave the upper hull to dry twelve-hours.

The reason I'm so specific as to how you assemble the hull quarters is this: As the r/c SKIPJACK features a hull that opens up at its centerline equatorially, it's vital that the upper and lower hull index together as well as possible owing to the fact that the only clamping force applied when they are assembled is at the extreme bow and extreme stern. Any misalignment between the two hull halves during assembly of the quarters, and you would suffer unsightly open seams between the halves.



As in metal welding, filler rod is sometimes employed when welding large plastic parts together, this to achieve like material build-up and to bridge significant gaps between the two items being fused. Here, a length of sprue (liberated from the SKIPJACK kit), has been heat-stretched to a mean diameter of .025". This polystyrene rod used to fill the inevitable seam between the two hull quarters of the upper and lower hull pieces. To carry the metal welding analogy a bit further as I explain what we're doing here: As pre-heating of metal parts to be joined is done to enhance fusion, wetting the groove between the hull quarters liberally with thin solvent cement works to soften the plastic which encourages the polystyrene molecules to interlink with those of the adjoining filler rod and hull quarter.

(Unlike adhesive bonding, we're welding the parts and filler rod into a whole. Once the operation is complete, no bonding agents are left, only a fused together assembly of identical material -- in this case, polystyrene plastic. The strongest possible union of separate parts).

If need be -- to insure an open seam of uniform width and depth to better receive the filler rod -- use an eighteen-tooth-per-inch hack-saw blade to achieve a uniform .025" wide by .025" deep groove for the filler rod.

Lay in the filler rod, brushing on solvent as you go. Things get gummy as you work and soon the rod dissolves into the adjoining material. The result is a near perfect fusion weld between the forward and after hull quarters. this is going to be an r/c model submarine ... we're not screwing around here! Strength and avoidance if dissimilar substrates are vital considerations during assembly.



Carefully following the inked on radial lines, a razor saw was used to remove the tail-cone from the after upper hull quarter, and bow from the forward lower hull quarter. Using a wide hard-block, sand the radial faces of all parts with #240 sandpaper. If you were careful you lost no more than 1/16" of kerf, that will be made up later with CA-baking soda filler.



When the r/c SKIPJACK leaves the surface, an unobstructed path for venting air, trapped in the diesel exhaust fairing, has to be provided. Failure to get all the air out of the fairing will upset the boats trim and make it difficult to hold exact depth when cruising along at slow speed. So, the following operation has to be done before securing the sail foundation pieces (sail-to-hull mounting foundations-R) to one half of the sail assembly: Grind a 1/8" deep by 1/8" wide vent channel atop the after foundation piece. A corresponding vent hole is drilled into the top, forward bulkhead where the exhaust fairing meets the trailing edge of the sail proper.

You will need the ability to flex the bottom of the sail a bit to get the lower sail plane bell-crank (sail plane bell-crank-T) on and off its bell-crank shaft retainers (sail plane bell-crank shaft retainers-S). To accomplish that the sail foundations are glued to only one side of the assembled sail. This permits the unglued underside of the sail to pull away from the other sail half when flexed to install or remove the lower sail plane bell-crank.



You see here how the sail plane operating shafts fit within the rather thick hub of the resin upper bell-crank (sail planes and bell-crank-Q). The gear portion of the upper bell-crank engages the gear portion of the lower bell-crank which works around its shaft to rotate the upper bell-crank when subject to the axial motion of the pushrod that runs from the motor-bulkhead of the SD.

Here I'm grinding away the raised molded in place bores of the original operating shaft holes projecting from inside the sail halves. The hole, as it is, is too big for the 1/8" diameter sail plane operating shaft. You see between the trailing edge of the sail planes and the ground away bore of one sail half the as of yet untouched bore. A small resin bushing (sail plane operating shaft bushings-N), installed into the original hole reduces its diameter to the required 1/8" bore required by the sail plane operating shaft. The two bushings are pushed in and CA'ed in place.

Note that a set screw, set within the hub of the upper bell-crank unit, secures the operating shaft of a sail plane -- these set screws easily reached from the opening in the bottom of the sail assembly.



Tape the halve of the sail together. install the sail planes by running each operating shaft into the bore of the upper bell-crank. With the two planes lined up with they're cords parallel to the top of the sail, and the center of the gear section faced down and perpendicular to the cord, tighten the two set-screws to secure the planes to the upper bell-crank part.

The two resin lower bell-crank shaft retainers are placed on the ends of the brass pivot pin, and the entire unit installed into the inverted sail and oriented so that its teeth meshed with those of the upper bell-crank. Squeezing the hull halve together between thumb and forefinger, to hold the shaft from moving, tack-glued the retainers to the sail halves -- use only enough CA to hold them in place. Check that rotation of the lower bell-crank caused free unbinding rotation of the upper bell-crank. Break and reposition the retainers as required until free, minimal back-lash operation of the linkage is achieved.



Position the clear piece that represents the emergency stern-light within the sail, then assemble the sail and hold it together with masking tape.

Avoiding those areas where masking tape is (you don't' want the thin glue to get sucked into the tapes edges by capillary action) brush thin solvent cement along the seam at the leading edge of the sail, along the top of the sail where the sail top piece will sit, along the trailing edge of the sail, and over the seam atop the diesel exhaust fairing. Also run cement onto these seams from the inside. Leave the assembly to dry for a few hours.

DO NOT apply cohesive glue to the bottom of the sail. Remember, you want to flex the bottom portion to get the lower bell-crank shaft in and out of its resin retainers.



To the right are installed flanges. Center and left are yet to be installed flanges and the hull sections they go into. you want one-half of the tail-cone flange (after radial flange-V) to project past the radial edge. However, you ant only 3/8" of the forward flange (forward radial flange-W) to project past the bow pieces radial edge.

As they arrive, the stiff, polystyrene flanges are flat. You can easily put a curl into them by running a flange piece over a small dowel as you apply pressure between dowel and finger as you pull the flange through. Keep at it until the flange retains a curl close to the radius of the part it will fit within.



Test fit the flanges to the tail-cone and bow piece. Onto the bow piece flange mark with pen or pencil where some of the flange overlaps two of the flood-drain openings. Once you've affirmed a good fit of the flanges, remove them, cut away those areas of the forward flange so marked, coat the flange and hull pieces with thin solvent cement to soften they're surfaces, apply gelled cement, then quickly assemble the flanges to their respective hull pieces, clamp and let sit for at least twelve-hours.



Time to work out the means by which the upper hull will be made fast to the lower hull. Rubber-band the removed tail-cone to the lower hull. Place the upper hull onto the lower hull, insuring that the indexing pins and long horizontal edges of the two hull halves fully engage -- leave the sawed off lower bow piece off-model during this operation. Rubber-band the two hull halves to they don't lift up on you. On the upper hull, 1/4" forward of the after radial edge, on centerline, mark off and drill a 7/64" hole that will pass the 4-40 securing screw -- drill through both the upper hull and after radial flange.

Remove the upper hull. Soap the threads of the screw (to keep adhesive from sticking), insert the screw thread through the flange hole; hold the foundation under the flange hole (upper hull securing screw and foundation-X) and run the screw into the taped hole of the foundation and tighten till the foundation is pressed tight to the bottom of the flange; apply some CA between the foundation and flange -- not too much!. Spritz on some zip-kicker to cure the glue; unscrew the fastener; with a counter-sink bit bevel the hole in the upper hull so that the screws head sits flush.



A single 4-40 flat-head machine screw passes through a hole in the upper hull half, pushing it all down upon the after radial flange. Up forward, the radial flange of the lower hull captures the bow piece attached to the upper hull, pulling the two hull halves together there. The Sharpe-kachur Z union at work!
  • Member since
    January 2003
  • From: Washington State
Posted by leemitcheltree on Tuesday, November 6, 2012 12:37 AM

Nice.....very nice.  I'm impressed.....so very impressed.

Thank you, David.

Cheers, LeeTree
Remember, Safety Fast!!!

  • Member since
    September 2010
Posted by modelnut on Monday, November 5, 2012 3:21 PM

Thank you for these posts!  I just got the Merriman/Caswell fittings kit in the mail today. Everything here will come in handy!

- Leelan

  • Member since
    March 2004
  • From: Spartanburg, SC
Posted by subfixer on Monday, November 5, 2012 7:25 AM

I would like to see a 688 get this treatment, too. Great posts, thanks!

I'm from the government and I'm here to help.

  • Member since
    September 2006
Posted by Fairseas on Monday, November 5, 2012 2:24 AM

Development of the Moebius Models 1/72 SKIPJACK Model Kit and its Conversion to R/C Operation, part-6

By David Meriman

A Report to the Cabal:

Marking Off, Test Fitting and Punching Holes

OK, you've culled out the unneeded Moebius 1/72 SKIPJACK kit parts; inventoried the fittings kit parts; degreased the resin parts; and scoured and sanded the hull, sail, and other appendages. Time to mark-off and open up the hull and sail holes. These holes needed to pass linkages, vent the hull and sail, permit flooding of the hull and sail, pass the control surface operating shafts, and to pass and accept the threads of screw fasteners used to hold the hull and sail assemblies together.

As the kit arrives to you the hull is broken down into four large hull sections or quarters, two upper hull quarters and two lower hull quarters.

With the exception of the resin blanking plugs, don't permanently glue anything together yet, though some of the below shots show assembled hull quarters. Do as I say, not as I do. Trust me, there's a method to the madness here. And you'll note in some photos that I have two SKIPJACK's in the shot. I'm not showing off. I do it this way to convey as much visual information as possible.

Fine. Let's get to work:



You want to check the fit, within the hulls stern, of the stern planes and rudders, as well as the running gear foundation.

An error we failed to catch on the test-shots was the too far forward positions of the rudder operating shafts. I corrected that by moving the center of rotation a bit farther aft to the cord of supplied resin rudders. However, you will have to relocate the rudder operating shaft hole, top and bottom.

Take the two stern hull quarters, identify the 3/16" diameter resin blanking pieces, and insert and CA each disc into a rudder operating shaft hole, leave a bit of the blanking disc standing proud of the hull so you can sand it to contour to the tight radius at that point of the stern. On the inside of the two stern quarters, grind flush the raised flanges of the former rudder operating shaft bores.

Back on the outside of the hull halves -- from the center of a blanking disc, measure 1/4" aft and drill a new 1/8" diameter rudder operating shaft hole, top and bottom. You're now ready to test fit the resin rudders and stern planes, running gear, and their associated yokes, pushrods, and intermediate drive shaft.



The function of the two white-metal yokes, that interconnect opposed control surfaces, is to provide clearance of the centrally running intermediate propeller drive shaft.

We're going to test-fit the stern control surfaces and running gear into the lower after quarter of the hull and get comfortable with how the two types of control surface operating shafts make up to the yokes; make up the pushrods to the yokes; and make up the intermediate drive shaft to the propeller shaft coupler. All this to check the components for fit and proper operation and to give you a good look at the assembly in operation (a chance to appreciate my magnificence) -- something you won't be able to do once the a stern-cone portion of the upper after hull quarter is permanently glued atop the lower after hull quarter.

The rudders are rather straight-forward in that the upper portions of those operating shafts are permanently encapsulated in the cast resin rudders with projecting end of each operating shaft running directly into a rudder yoke bore and made fast with a set-screw. The rudder operating shafts have machined flats, insuring non-slip alignment between the two rudders when made up to the yoke.

The stern plane operating shafts, through necessity, have to be removable from the stern plane pieces themselves. This because the outboard ends of the control surfaces fit within horizontal extensions that project aft and block a straight-in insertion of the stern plane with its operating shaft installed. So, I've made the stern plane operating shaft removable. Making up a stern plane to its yoke goes like this: a stern plan is held behind its horizontal stabilizer by masking tape; the stern plane yoke, with attached pushrod, is suspended within the stern with the aid of either a long hemostat or needle-nosed pliers; The stern plane operating shaft (it's flat oriented to present to the tip of the stern plane set-screw) is pushed through the hole in the center of the horizontal stabilizers outboard bearing, through the bore of the stern plan, and into the bore of the yoke till the outboard end of the operating shaft is flush with the outboard face of the horizontal stabilizer bearing; the operating shaft fully inserted, the stern plane set-screw is tightened (don't over-tighten or you'll strip the resin thread), keeping the shaft from rotating within the stern plane; finally, the inboard end of the operating shaft is secured to the yoke by tightening the yokes set-screw. You want to orient the stern planes cord line perpendicular to the yokes bell-crank arm.

Whew!

Oh ... and for the sake of scale, orient the stern planes with the operating shaft set-screws on the bottom, out of eye-shot.

Employing 1/16" diameter brass rod, make two pushrods, 7" in length, each with a Z-bend at one end. One pushrod makes up to the rudder bell-crank, the other pushrod makes up to the stern plane bell-crank. Later, the forward end of these pushrods will receive a magnetic coupler that will engage a counter-part that makes up to a SD pushrod and servo. Magnets are used to couple the two linkage elements -- no back-lash, no tools, no sweat. More on that later.

Two oblong holes, one in each of the bottom hull quarters, are intended to accept the stud of a display stand. Fine for static display of the model, but of no utility to those wishing to r/c the SKIPJACK model. Use the two resin blanking plugs to block those holes, as you did with the rudder holes -- then grind away the raised flange within the hull quarter over those blanking plugs.

Take the two resin propeller shaft foundations and, after grinding away the radial and longitudinal raised braces at the stern of the two stern hull quarters, test them for a tight fit. Keep the lower after hull quarter propeller shaft foundations in place for the next step, the dry-fit of the running gear and control surfaces.



Install the two rudders and two stern planes as seen above. And check for non-interference of control surfaces and yokes through the full travel (not to exceed 35-degrees left/right and rise/dive). Note how the intermediate drive shaft runs through the center of the rudder yoke and over the swing-arm of the stern plane yoke.

The intermediate drive shaft is a 8 1/4" long length of either .014" wall thick, 7/32" outside diameter brass or aluminum tubing with half a Dumas nylon dog bone insert into each end -- each dog-bone pined to the shaft with a transverse length of 1/16" brass rod peened at each end. You'll work out how much dog-bone half projects past the tube as you integrate the running gear with the SD.



You're going to saw away portions of the stern and bow from their respective hull quarters to establish a Z- type separation line between upper and lower hull sections. This is a long accepted hull access methodology popularized by r/c submarine pioneers, Dan Kachur and Greg Sharpe. This type break between the two hull halves provides for quick access (only one screw at the stern holds the hull halves together), is strong, and is less susceptible to flexing than a simpler horizontal break that runs completely around the bow and maybe even the stern

With the Z-break a single screw presses the after halves of the hull together as a radial capture flange forward works to press the forward halves of the hull together. To achieve this Z-separation you'll remove portions of the bow and stern and weld them to the opposing hull section. Confusing? Look at the pretty pictures!

Take the forward lower hull quarter and after upper stern quarter in hand and put the other quarter hull section out of the way so you don't grab one of them by mistake when you start marking and cutting.

Now, to mark the radial lines around the hull quarters where you will saw them free. Any number of ways to accurately mark off a radial line on a tapered body-of-revolution. But, the easiest method, presented here, is to take advantage of the internal stiffening ribs molded within the hull quarters, using them as both guide, and datum line from which to identify the distance from bow and stern to cut the bow piece and stern piece away. Study the above photo.

Load your compass with a Sharpie pen. Let's start with the forward lower hull quarter: Identify the second radial stiffening frame from the bow, that's our datum line. Set the compass distance between point and pen tip at 3" inches. place the point into the right-angle union between hull and frame. Careful to maintain the line between point and pen tip parallel with the hull quarters longitudinal axis as you move the compass laterally, mark a radial line into the inside of the hull quarter, that inked in line denoting the bow cut line.

Do the same for the after upper hull quarter. That datum frame is the one at the leading edge of the horizontal stabilizers. Set the compass so that the radial line established is 2 1/4" forward of the datum frame.

It's much easier to follow the cut line if it's on the surface of the hull quarter, so now you have to transfer the inner cut line to an outer cut line. Plug in a 100 Watt light bulb, and us it to back-light the interior of the hull quarter so you can see the internal radial inked in line through the translucent plastic. Pencil in cheat marks to the surface of the hull over the line you see through the hull. After enough points are put down to get an accurate indication as to the lines true form, lay down some masking tape, it's edge at the cheat-marks, and ink in a proper cut line to the outside of the hull using the edge of the tape to guide the Sharpie pen point.

Remember, cut off the stern of the after upper hull quarter, and cut off the bow of the forward lower hull quarter. Don't screw up! And don't cut these pieces off till later, we're just marking things off at this point.

Check twice and cut once!



Mark then drill or grind out the opening atop the two hull quarters. Above you see two SKIPJACK upper hull pieces, the one atop has its holes opened up. The lower unit has just been marked off as to hole shape, location, and size. Use new (sharp) drill bits spun at low speed. Styrene takes to the bit well, put keep the pressure light as you punch through. The indented round depressions on the sides (upper and lower) of the hull quarters indicate drill size to use. For holes larger than 3/32, start the hole with a 1/16" bit, this serving as a pilot-hole that better directs the cut of the larger bit that follows. When using high-speed cutting bits, do not let the bit stay in the work too long or the plastic will melt. Introduce the bit into the work in short, low pressure jabs.

Punch out 7/16" diameter holes in the centers of the six ballast tank vents on the forward deck flat. Do the same for the four ballast tank vents on the after deck flat. Don't touch the four big MSW holes on the after lower hull quarter after quarter hull section, those will later be covered by PE gratings.

The following hole locations are now marked off along centerline on the forward upper hull quarter. Measurements are taken from the projecting nib, marked 'datum' on the above photograph, just aft of the forward deck flat:

1. A square hole who's forward transverse line is 3/16" from datum, and after transverse line is 5/8" from datum. The longitudinal edges of this inked in hole are 1/16" inboard of the troughs that accept the indexing lips at the bottom of the sail assembly. Later the lower sail plane bell-crank gear will project through this hole.

2. 2 1/4" aft from datum is a 3/16" hole that will pass the snorkel head-valve tube down into the hull. If you use the Caswell-Merriman 3.5 Sub-driver unit, the SAS snorkel foundation piece will be used as a marking stencil to indicate where you'll drill 1/16" holes that will accept the self-taping machine screws that secure that foundation atop the hull, under the sail. That foundation piece seen atop the second hull in the picture.

3. 6" aft from datum is the first of three 1/4" holes that vent air in and out of the hull, under the sail and exhaust fairing.

4. 8" aft from datum is the second 1/4" vent hole

5. 10" aft from datum is the third 1/4" vent hole

Once you have marked out the holes that go under the sail, snip the two nubs (indexing pins, if you will) off the hull and at their former location, drill 7/64" holes. These will pass the 4-40 machine screws that hold the sail assembly down onto the upper hull. There is a third nub, back near the after portion of exhaust fairing, on the after upper hull quarter. Snip it off too, but drill no hole there yet.



Flip the forward upper hull piece and work on the inside now.

Open a long, narrow extension of the square hole you just put. This will eventually pass the pushrod magnet that makes up to the magnet at the base of the lower element of the sail plane bell-crank assembly. Note the orientation, and the side where you put in the new cut, and it's measurements. Now, grind away. The outboard longitudinal side of that the hole butts up against the raised portions of hull under the sail -- those raised portions accommodate the longitudinal indexing troughs atop the hull. The photograph shows how the linkage goes in there once all these preliminary operations are out of the way. Take heart .... you'll eventually get there, pal.



With masking tape, put the two sail halves together, time to open up the bottom of the sail to pass the bow plan linkage (mounted within the sail) and snorkel head-valve assembly (mounted atop the hull, but fitting within the installed sail). The upper sail has already been opened up, the lower sail has been marked off and is ready for hostilities. I forgot to indicate on the model the distance from the forward hole (both of them already provide as the kit arrives) to the forward transverse line of the hole. It's 3/16" from the holes center.



Tack-glue the forward and after resin foundation pieces within one half of the sail, then tape the other half of the sail onto it. With a Sharpie pen mark off the spot where you will drill a 3/32" hole and tap it for a 4-40 machine screw. Take everything apart and punch those holes and cut the threads into the sail foundation pieces.

Most apparent in this photo, at the base of the sail, at its perimeter, the plastic extends down into long-running lips that engage the deep troughs set within the top of the hull. The two 4-40 machine screws running up from within the hull into the resin foundations fixed in the sail make fast the sail to the hull, yet provide for quick and easy separation of the two for transportation, adjustment, or repair.



The many square holes you have to punch open in the bottom of the two lower hull quarters is done with drill, square files, and sanding sticks. The work goes pretty well if you take it easy and outline the inset gratings molded into the plastic with a Sharpie pen. Yes, you'll loose all that beautiful detail, but to be a practical r/c model submarine that works as a wet-hull type, you need to lose the flood-drain grate detailing. Get to it!

I suggest you punch out all the holes before sticking the hull quarters together, the parts are easier to handle when they are smaller assemblies. Note on the lower hull that I've also taken advantage of the engraved lines of the torpedo tube shutter doors to open those up -- that model will later be outfitted with six practical launchers.

A torpedo firing SKIPJACK is an option for you way-over-the-top r/c submariners. The nest foundation is provided with your fittings kit. If you go the hostility route, here's the weapon system you would need to make the local lake safe for Democracy,

http://www.sub-driver.com/torpedo-systems/torpedo-system-1-72nd-scale.html

and a technical paper on the system,

http://support.caswellplating.com/index.php?/Knowledgebase/Article/View/359/47/torpedo-launcher-instructions-172



Before installing the two sets of SD foundations, shock absorber, and SD Velcro strap foundation, it's wise to mark out a centerline to the inside of the lower hull quarters.

Examine the two sets of resin SD foundations provided. The smaller set goes aft and the cut-outs within those clearly defines where they butt up against a frame in the lower after hull quarter. The other, larger set of foundations fits against the forward face of the aftermost frame in the forward lower hull quarter. Note that the circular edge at the top of these foundations is not concentric with the circular edge at the base. On both sets of foundations the narrower portions of the pieces of the foundation halves meet at the bottom of the hull -- get that straight before CA'ing them permanently in place!

With the forward set of SD foundations glued against the frame, butt the after end of the shock-absorber (where the pin projects up) up against the forward face of the SD foundations. Center it, then using a ling pencil led, mark onto the hull where the holes will be drilled to pass the six securing 2-56 machine screws.

Remove the shock absorber and grind away a 1/2" wide, 3/8" deep channel down between the two halves of the SD forward foundations. This channel permits disassembly of the shock-absorber components, should that every be necessary.

The forward end of the strap foundation butts up against the after face of the forward most frame of the after lower hull quarter. (The tall end of this resin piece goes forward, the shorter end goes aft). Lay the piece on its side within the hull and mark off where you will punch two 3/32" diameter holes into the bottom of the hull, these will pass two 2-56 flat-head machine screws that secure the strap foundation piece to the lower hull.



Before drilling a hole, I push a pointed rat-tail file hard into the plastic, a sort of 'pilot-hole' that works to guide the drill bit as I open up the hole. Keeps the work centered.

Here I'm punching out 3/32" holes to pass the flat-head 2-56 machine screws that secure the SD shock absorber to the bottom of the forward lower hull quarter.

To the outboard side of the hull I will bevel these holes with a counter-sink bit to accept the flat-head screws that secure both the shock-absorber and strap foundation.

  • Member since
    September 2006
Posted by Fairseas on Sunday, November 4, 2012 5:32 PM

David must have been up late writing this latest installment... :D

Development of the Moebius Models 1/72 SKIPJACK Model Kit and its Conversion to R/C Operation, part-5

by David Meriman

A Report to the Cabal:


[SIZE="4"]Preparation

Only the most dense of you would miss the sub-text of the last four chapters. I've been selling you on both the Moebius Models plastic model kit of the SKIPJACK, as well as the Caswell-Merriman 1/72 SKIPJACK fittings kit. That said -- and now distancing the discussion far enough away from the good Moebius people so as to spare them any collateral damage from the following admonition -- I'm going to give you, those of you who wish to acquire both products, a dose of reality.

Anyone who can smear glue on styrene, and finds the Moebius SKIPJACK an attractive subject, I encourage to buy it and have a ball. It's an easy kit to assemble, and is a stunning display piece. Get two, three, hell ... get a case of those kits! You have my blessings. Knock yourself out.

However, you few out there thinking of going the full mile; those who plan to also get the Caswell-Merriman fittings kit, ask yourself this: Why? That fittings kit is for the conversion of the Moebius and Scale Shipyard 1/72 SKIPJACK kit to radio control, that fittings kit is good for nothing else. You sure you want to do this? Think about this long and hard before you plunk down your cash.

You're not listening, are you? Fine. I'll try this:

The most demanding arena to play in within the r/c vehicle hobby is r/c model submarining. The construction, set-up, successful operation, maintenance, and repair of r/c model submarines takes considerable skill and determination -- this is not an entry level activity; you don't do this successfully unless you already have experience assembling, setting up, and operating other, simpler r/c type vehicles. You don't run a marathon out of the womb. You don't get into r/c model submarining (at this level) unless you are an accomplished r/c flyer, driver, or robot fighter. Crawl, walk, jog, run! Same with r/c submarining. Don't buy the fittings kit (any fittings kit) unless you know your way around r/c systems, are pretty good on the sticks, have substantial model-building skills, and you have money to spend.

If your primary income is a government check, stop right here, pal, this is not a poor man's game. It's for elite Craftsmen. Do you qualify?

Or, would you rather I sweet-talk you, suggest that your poop don't stink, then sell you stuff that is way out of your league?

The rest of the chapters to this Cabal Report constitute the 'how-to' of integrating the fittings kit elements to those of the 1/72 SKIPJACK kit. All my warnings issued, I have to make the assumption you have a well outfitted workspace, you have good hands, you can problem solve without having to be spoon-fed, and you have the cash to play this game.

About the money: The SKIPJACK kit and fittings kit are a small fraction of the eventual outlay of funds to see the project through. You still have a Sub-driver to buy. Add to that the batteries, charger, r/c system, angle-keeper, fail-safe, speed controller, servos, Lipo-Guard, BEC, receiver, and so forth. Before you even get your completed r/c model submarine to the waters edge you will have pumped over fifteen-hundred-dollars into the project. Do you want to risk all that cash as you send your little submarine to the bottom of the lake? Think before you whip out that credit card!



The Moebius kit parts you will use, if you convert to r/c, are seen here -- all the other items that come in that box you can bag and put in the 'parts bin'. To the right of the decal sheet are the contents of the Caswell-Merriman fittings kit. Integrate these items with the SKIPJACK and it will be ready to receive the 3.5 SKIPJACK Sub-driver (SD), and Caswell 1/72 SKIPJACK ballast weight-foam kit.

What is it they say about a boat being a hole in the water into which you shovel money? They're right. Have I scared you away yet?

OK, let's say you got stupid, made your purchases, and are now hiding your credit-card receipts from the Wife.

Let's get to work:



During the casting process, the resin forming tools are given an obscenely large amount of silicon mold-release spray in order to extend tool life and ease the extraction after the resin changes state. Much of this primer and paint inhibiting oil stays on the part, and has to be completely removed before you can get any type of adhesive bond to it. De-grease ALL of the resin parts.

Take the torpedo tube foundation assembly apart (if you're going to us it, it's the only optional item in the fittings kit), pull the operating shafts out of the stern planes, as well as they're set-screws; and gut the SD shock absorber -- this to get full access to the resin surfaces without hardware getting in the way. Put some gloves on, or this stuff will tear you up. And work in a well ventilated space, don't get any in your eyes, and this stuff is very flammable so make sure you don't have any ignition sources nearby. Nasty stuff, but it will de-grease your resin parts. Do not get any on the styrene parts!

The de-greasing liquid of choice is lacquer thinner or straight acetone: a resin part is immersed in the liquid for a minute or so (too long and the part starts to wrinkle), and as it soaks, scrub all surfaces of the part with a very stiff brush, like the stencil-brush pictured above. Pull the part out and scrub the surfaces you can get at with a soaked abrasive pad. Dunk the part one last time to wash off residue, pull out and wipe and blow to remove any clinging lacquer thinner/acetone.



Pull up a small tub of fresh water, some scourging powder, a fresh abrasive pad (that's never seen lacquer thinner or acetone), a virgin stiff brush, wash-cloth and paper towels. And don't let the pretty picture above fool you, it's going to get messy. In fact, this task is best done in the tub with the shower running. In a cup put in some scouring powder, add some water and mix it up to a gooey slurry. Dip your abrasive pad, wash-cloth, and stencil-brush into the abrasive and rub it vigorously over and into all polystyrene parts as well as the resin control surface parts. Keep the work wet. Which abrasive polishing tool you use depends on the geometry and accessibility of the item being scrubbed.

When done, put the work under warm running water and scrub till the soapy scouring powder is washed completely away.

This step removes any parting grease still clinging to the injection formed parts (yes, plastic model kits sometimes come out of the box NOT READY for priming and painting). This course polishing imparts small scratches onto the parts surface, tooth that will greatly enhance the sticking power of later primer, cohesive, filler and paint. This is a step that should be performed on all injection formed plastic model kits, no matter what you're going to eventually do with them.

But, wait! There's more ...



I assume you know how to make and use a sanding-block. You're going to use both hard (stiff piece of wood) and soft (flexible piece of foam or rubber) backing blocks. Hard blocks on parts of simple curve, like the above control surfaces and sail sides. You'll employ the soft blocks on structures of compound curve, like the hull quarters, top of sail, fillet between exhaust fairing and sail, and propeller fillets. I classify those great foam-core sanding sticks as mini soft sanding blocks -- you see one of those used above to knock flash off the cast white-metal propeller.

You'll employ #240, #400, and #600 grit wet-and-dry sandpaper. but this initial sanding of all styrene and resin control surfaces parts will be done with #400 -- to insure the removal of all substances that would inhibit adhesion and to render mechanical tooth to the parts to better hold the filler, putty, and primer applied later.

You want the primer and paint to stick to the work, don't you? You don't want to suffer 'fish-eye' in the paint job, right? There is a strong possibility you will suffer these problems should you fail to de-grease, course polish, and sand the parts. This is what can happen: You assemble the parts, fill the seams, prime, paint, applied masking and you paint again, you yank off the masking tape and peel all or some of the primer-paint under the masking off the models surface .... Yikes! The primer was blocked from proper adhesion to the plastics/fillers/putties surface because contaminates got in the way.

An r/c model experiences a lot more stress on its coating system than a static display model safely tucked into a display case does. The r/c model is subject to collisions and grounding, and handling 'accidents'; its coating system is exposed to a significant amount of UV which only non-hobby type coating systems are formulated to tolerate; and the different expansion rates of the coating system and substrates puts a great deal of shearing force between the two (a very warm model submarine that has been sitting under the hot July sun, suddenly dunked into sixty-degree fresh water). All examples of environmental conditions that attack your nice paint-job. You want that primer, filler, putty and paint to stick to the model parts as tightly as you can arrange. Hence all the substrate preparation I've outlined above. Not suggestions. These are things you got to do.



The flats at the outboard ends of the stern planes, the top of the upper rudder around the anchor-light, the safety-track running atop the upper hull and the near right-angle union between the horizontal stabilizers and hull require careful, precise sanding with a stiff, but thin sanding tool.

Such an abrasive tool is made by folding over a piece of suitable grit sandpaper to form a crease at its center, you then spray some CA setting solution onto the back-side of the sandpaper, coat one half quickly with some CA, then fold it over and clamp it till the CA cures hard. The stiff, double-sided sanding pad is then trimmed at all edges and corners with a scissors, and it's ready for use. Just another abrasive tool in your arsenal of sanding sticks and sanding blocks. A very handy tool indeed.



Some, but not all of the Moebius kits suffer from an outward bowing (warp) of the two hull bow quarters. You see this in the photo above. You can live with it and rely on the registration pins and the tongue-in-groove edges that run the length of each hull quarters longitudinal edge to pull the parts together, or you can apply some heat to the two warped hull quarters and coax them back to the correct diameter. That's what I did. An operation not for the faint of heart!

A hair-dryer is not going to cut it -- you need an industrial strength hot-air gun like this one I got from Harbor-Freight (I LOVE Harbor-freight!). To avoid disaster, you must keep the gun in motion over the work, and to get as even a heat distribution to a hull quarter as you can.

Be warned: you fail to evenly heat the work and produce a hot-spot you will either punch a hole in the part or distort it beyond repair causing you to issue a primordial scream and stomp around in a blind rage.

Some fun, huh!



Believe it or not, it worked for me -- but then again, I've been doing this sort of scary :censored: for decades. There's a lot of burned, cut, sawed, melted, and stomped-to-death failures in my wake.

I simply held the work in one hand, applied the heat evenly, and when things got toasty (painful) I squeezed the hull into a proper half-round. Don't wear oven-mitts when you do this -- you're pinkies will tell you when things get hot enough.

A smarter way of doing this is to attach two wooden fences to a flat board, and jam the hull quarter between the fences, apply the heat, then let the work sit there till it assumes room temperature -- the smart-money is on that technique, not the hand-hold one.



Unlike resin and metal parts, polystyrene -- the plastic most injection formed kits are made of -- is a thermoplastic that lends itself to chemical and thermal welding: the introduction of heat or a solvent breaks the molecular chains, a characteristic of a solid, and momentarily changes the state of the material to a liquid or semi-liquid where, upon freezing or dissipation of the solvent, the new array of interlinking molecules cross over the seam line bridging the former gap, leaving a single item where there was once two. A fusion weld. The process is called cohesion.

And that's what the two solvent type cements above do. They melt styrene plastic. This is the preferred means of attaching styrene pieces to one another. The very thin solvent, applied with a brush, is used to soften the surface of the parts to be welded -- akin to pre-heating metal before effecting the weld. The gelled solvent cement, in the red tube, gives up its solvent much slower, giving you the time to apply it to one softened surface and mash it down onto the other, and work out any misalignments.

When you stick two or more pieces together by introducing a third ingredient that remains to anchor the pieces together, that's called an adhesive. CA, epoxy-glue, white glue, horse-glue, solder (yes, solder) and so many others are adhesives. No fusion here, it's the adhesives wetting ability, to get in close to the atoms of the substrate, that puts into play a mysterious (to me anyway) 'bonding force' between the parts and adhesive. Though, in some arrangements, mechanical tooth or physical interlocking of the parts can and will enhance the holding power of the adhesive bonded joint.

We'll use CA on this job to join dissimilar materials to one another -- situations where a fusion weld is not practical with street-legal chemistry.



If at all possible use the DuPont brand primer (Nason), paint (Chroma-Color), and clear-coat (Chroma-Clear) with flattening agent. You'll find this stuff at a local automotive refinishing supply house. Look 'em up!

Second choice is rattle-can paint from a box-store, something like Rust-Oleum or Krylon. But, decant the stuff and shoot it through a medium sized single-action air-brush/gun like my old trusty Paasche H-model seen above -- use the big tip and needle. Get cans of the primary colors, black, white, and primer -- the primaries so you can mix them up to get the colors you need (very dark gray, brick red, and international orange). And pick up low-tack masking tape and a color wheel.

Don't use hobby-store paint. It's all crap, that stuff is formulated to be safe, not good. You need a paint that has high abrasion, UV, and chemical resistance; and is flexible and has superior sticking power.

(You'll find nothing useful in today's brick-and-mortar hobby store but glue, blades, and magazines. The pimple-faced counter-person, likely some punk r/c racing type with metal studs and rings projecting from lips, lids, and ears; an un-cooperative, smart-ass, cash-register monkey more preoccupied with the timing of his next smoke-break than any technical or stock questions you need answers for. You dare talk to one of these dorks and all they can hear is a Charlie Brown, Whaa, whaa-whaa, whaa, whaa-whaa, whaa... ).

:censored: 'em!

Do your tool and consumables shopping at the box-store, auto refinishing house, Harbor-Freight, and the Internet.



You'll use an air-dry putty for scratches and low-fill seam work. I recommend the Nitro-Stan line. you can use it straight out of the tube (also available in cans), but you'll find that it's best applied with a brush, screeding blade (that yellow thing next to the tube of putty), or finger. When brushing it into tight unions cut the putty a bit with lacquer thinner, makes it flow better. The automotive refinishing supply house has it or something very much like it, likely 3M Red.

And get some two-part, polyester auto filler, like Bondo, for the deep seams and re-contouring work. I prefer the Evercoat brand. You can get that from the Caswell company. In fact, you can get just about all the tools, abrasives, and other consumables from that single source, http://www.caswellplating.com/

Yes, yes .... I'm a whore. Sue me!

  • Member since
    September 2006
Posted by Fairseas on Friday, November 2, 2012 6:25 PM

Development of the Moebius Models 1/72 SKIPJACK Model Kit and its Conversion to R/C Operation, part-4

By David Meriman

A Report to the Cabal:

This one's dedicated to my East Coast model submarine buddies, like Ray Mason, sitting in the dark, waiting for the lights to come back on and the water to depart. Hang in there, guys!

Parts one through four serve as preamble to the meat of this series, a detailed discussion -- an instruction manual, if you will -- on how to employ the Caswell-Merriman Moebius 1/72 SKIPJACK fittings kit to convert the static display plastic model kit to a practical, well running, and robust r/c model submarine.

I had little input as to how the kit was engineered. The only input I had was to ask that there be a longitudinally running, horizontal break between the hull pieces, be they two long ones, or the top and bottom halves divided into quarters. This to achieve a removable upper hull half to afford internal access for r/c versions of the model. I also asked that the hull pieces be of substantial thickness (3/32" the ideal); that the lower and upper hull halves or quarters be outfitted with internal stifening frames; and that there be provided a tight fitting system of pins and tongue-in-groove hull edges that would insure positive registration of the two removable hull halves. Other than that, the guys at the point of manufacture did all the engineering -- and what a wonderful job they did: a sturdy, well fitting, easy to assemble plastic model kit with the minimum of parts.

The mock-up SKIPJACK kit -- though fabricated in a 3D machine -- was broken down into parts and the parts indexed as the eventual kit would be. Inspection of the mock-up kit revealed that my wants had been incorporated. I was delighted as in this game you have to be ever mindful that the product is primarily targeted at the vast majority who will only assemble the kit for static display. Fortunately the things I asked for did not impact on the cost of the kit, so they were incorporated.

So, with my work for Moebius completed, I directed my considerable talents and good looks to service to the Caswell empire -- the design, fabricate, and packaging of r/c conversion kits needed by our customers who wish to turn the Moebius SKIPJACK into a well running r/c model submarine. Before the kits hit the West Coast I had completed all the fittings kit masters and tools, and was well underway with part production. I could do that as I made use of the second generation test-shot kit parts to give form to the masters that were conformal to the inside surfaces of kit parts. Masters were built up from test-shot kit parts (all the control surfaces) automotive filler, brass, plastic sheet, RenShape, foam-core PVC sheet, and white-metal castings.

Below is a visual presentation of the items that make up a Moebius 1/72 SKIPJACK fittings kit, along with a table below denoting the name and function of each item:

   
A stern planes and yoke
B rudders and yoke
C after Sub-driver foundations
D Sub-driver shock absorber
E forward Sub-driver foundation
F nest transverse bulkhead
G nest keel piece
H torpedo tube nest foundations
I torpedo muzzle bulkhead
J propeller shaft foundation
K propeller
L propeller shaft, bearings and coupler
M hull rudder hole blanking discs
N sail plane operating shaft bushings
O hull stand hole blanking pieces
P Sub-driver restraining strap foundation
Q sail planes and bell-crank
R sail-to-hull mounting foundations
S sail plane bell-crank shaft retainers
T sail plane bell-crank
U mechanical fasteners
V after radial flange
W forward radial flange
X upper hull securing screw and foundations

The first area I addressed as I went about the chore of creating masters was the stern. Specifically, the two-piece foundation needed to mount the propeller shaft bearings. I started by removing the strengthening rib and single longitudinal brace in that area of the two stern hull quarters. I CA'ed a half-circle sheet-plastic transverse damn forward and a blanking sheet butted against the after end of the hull, where the base of the propeller hub would fit. These dams to contain the thinned down filler used to give form to the foundation masters.

I waxed the inside of the containment to prevent the hardened filler from sticking to the styrene.

I thinned the filler with lacquer thinner till the mix was runny enough to insure a bubble-free fill of the stern areas with the gooey stuff. I mixed in a little hardener, poured and pushed the stuff into the stern areas and waited for the filler to cure.

Automotive filler will shrink a bit if used straight out of the can, Even more when you cut it with thinner. So, I was compelled -- after the two halves of the propeller shaft foundation master cured -- to pull them out, re-wax the interior of the hulls, smear un-cut catalyzed filler on the contact face of the masters, and smashed them into place, where they remained till the filler had hardened. The glaze I put on the parts made up for the shrinkage and produced a tight glove fit to their respective spots on the hull stern pieces.

The two halves of the filler formed propeller shaft foundations were marked out. Filed out those channels would form the bore through which two propeller shaft Oilite bearings would fit. Extreme care was taken to insure that the centerline of the two channels ran perfectly in alignment with the hulls longitudinal axis.



To make the reach of the long pushrod between the after end of the Sub-Drive (the watertight cylinder containing the propulsion, ballast, and control sub-systems) motor-bulkhead a simple one, I employed a partial bevel-gear linkage within the sail to translate the axial motion of the pushrod (mounted up against the inside of the upper hull) to the rotary motion, up within the sail, needed to operate the sail plane operating shaft. The masters of the two partial gear elements are seen here. A small cylindrical magnet within the eventual cast resin lower gear element engages a magnet at the forward end of the sail plane pushrod. A similar magnetic coupling at the after end of the pushrod produces a near slop-free linkage between servo and sail planes.

These masters, along with the others, would be de-greased, cleaned up, (pickled, if metal), primed, then used to make rubber production tools.

I needed solid foundations within the forward and after bottom ends of the sail through which securing machine screws would hold the sail down upon the hull -- permitting removal of the sail from the hull for sail plane linkage and snorkel induction head valve and float adjustment or maintenance.

The masters of those foundations formed -- like the propeller shaft foundation masters -- from thinned down two-part automotive filler poured into the area of the model part where the eventual model part would fit. Here I've formed the containment dams from oil-based modeling clay. However, with these, the last step was to assemble the two sail halves and hold them tight with masking tape as the last application of filler, applied to the outboard faces of the foundation masters, acted as an adhesive to form two solid foundation masters.



As I worked up the masters for the Moebius Models 1/72 SKIPJACK fittings kit, I developed the jigs, templates, and plumbing masters needed for production of a dedicated 3.5" diameter, SAS type, single-motor SD to handle the ballast, control, and propulsion of this kit.

I used my old, faithful Scale Shipyard 1/72 SKIPJACK model as the evaluation hull as I modified and eventually froze the design of the new SD.



I fabricated the stern plane operating shaft yokes and the rudder operating shaft yokes from brass rod. Here I'm checking the yoke masters as well as an assembled propeller assembly with mock intermediate drive shaft to check for non-interference of the control surfaces through they're full 35-degree travel up/down, left/right. Once all was found to operate properly, the yokes were removed, fillets built up with CA and baking soda, pickled, primed, used to make a disc type metal casting centrifugal tool.

Most of the masters are now in primer gray and ready to produce the production fittings kit tooling.



The first set of fittings kit production tools were made from relatively hard BJB Inc., TC-5050 silicon, platinum cured, room temperature curing (RTV) rubber. The relatively 'hard' rubber is best suited to hold the masters when the time comes to make duplicate tools or copy masters. More on that, maybe, at a later date.

This shows the four two-piece production tools used for resin part production. Note that the control surface cavities have been outfitted with brass operating shaft inserts, as well as brass rod mandrels in the torpedo launcher foundation tool, and a brass pivot pin in the 'accessories' tool. The inserts will be partially encapsulated in the hard resin and become operating shafts, pivot pins, and cylindrical bores.

With all inserts in place I spray in some Mann-200 mold release spray, dust on some talcum powder (a 'bubble getter'), assemble the halves of a tool, sandwich each tool between wooden strong backs, and clamp the assembly tight with rubber bands. Catalyzed resin is poured in through a single sprue hole where it is distributed to the cavities through a system of runners -- displaced air is routed out of the cavities through a separate vent-channel system. I'm a master at rubber tool design.

The Mann-200 keeps the polyurethane resin from sticking to or attacking the rubber (but not completely, these tools have a 100-200 cycle life before becoming too brittle for use). Talc acts as a wick to pull resin into portions of the tools cavity that otherwise would trap and hold air pockets, which evidence on the part as pinholes.

A fifth production tools, not shown here, is a disc-shaped tool that is spun in a modified blood separation centrifuge while molten white metal is poured in. Another virtue to the TC-5050 is its ability to handle low-melt metals of working temperatures below 600-degrees.

Most of the Caswell-Merriman 1/72 SKIPJACK fittings kit is fabricated from cast polyurethane plastic -- some of those raw shots seen in the center of the table. I remove the individual parts from the trees, machine back the stubs, and file off most of the flash. No attempt is made to de-grease the resin parts, I leave that for the customer.

This disc-shaped rubber tool is spun in a modified blood separation centrifuge as molten white metal (an alloy of Tin and antimony) is poured in through a sprue hole at the center of rotation. Rubber mandrels set within the cavities form the bores for the stern plane and rudder operating shafts. Another virtue to the TC-5050 is its ability to handle low-melt metals that can be poured successfully at a temperature below 600-degrees.

Once the yokes are snipped away from they're runners, the mandrels are pulled and each yoke is drilled and taped to receive the operating shaft retaining set screws.



The white-metal SKIPJACK propeller -- both the Moebius kit and the Caswell-Merriman r/c conversion fittings kit represent the original five-blade 'power' screw -- starts life as a gravity poured white-metal casting, which explains the long sprue on the center propeller. Tall to take advantage of the pressure head produced when pouring the molten metal into the screw cavity of the mold: the taller the sprue, the more hydrostatic pressure at the bottom of the tool, the more inclined the metal is to seek out and fill all cavities within the tool. Also, the tall sprue acts as a header in that it serves to provide make-up material should there be a leak across the flange face of the two tool halves.

Shrinkage is not an issue with white-metal -- which actually expands a bit during the state change from liquid to solid -- the Antimony expands in volume when it freezes.

To the left is a propeller casting with the excess sprue cut off on the band saw. To the right is a finished propeller whose excess sprue has been turned to the proper pointed dunce-cap shape. Note the assembled Oilite bearings and thrust washers, propeller shaft, stainless steel thrust washers, and Dumas style universal coupler. The screw is secured to the propeller shaft with a transverse 6-32 X 1/8" SS set screw.

  • Member since
    September 2006
Posted by Fairseas on Friday, November 2, 2012 2:57 AM

Development of the Moebius Models 1/72 SKIPJACK Model Kit and its Conversion to R/C Operation, part-3

By David Meriman

A Report to the Cabal:



Today the chronology of events in the production of an injection-formed plastic model kit goes something like this:

1. Lead-man is assigned, research is completed, and documents and scanning models (optional, but desired) are scanned and reduced to a CAD file.

2. That file used to create a stereo lithographic 3D mock-up, or proof model, which is sent to the client for approval/correction.

3. The corrected mock-up is returned to the manufacturer with needed changes identified, the CAD file updated and converted to CNC code and, in a flurry of metal chips, the injection forming tools are cut, and clamped into a production injection forming machine.

4. The tool clamping system is fine-tuned after the factory tool-and-die guys examine the first shots out of the machine. They are informed by the physical condition of the shot: Does the machine achieve a complete fill of the tools cavities (temperature, pressure, and channel geometry)? Are the two tool halves in alignment (unregistered halves to a shots tree)? Is an even distribution of force applied throughout the flange area of the two tool halves during the shot (flash)? And do all the test-shot plastic parts fit without misalignment between them (machine cycle time)? After the clamping system is dialed in, cycle rate established, and other working parameters set good quality test-shots can be produced consistently. Samples are sent to the client for critique.

5. Corrections to the tooling are performed to satisfy the client identified errors found on the test-shot parts. This likely requires more cutting on the tool and may also involve weld build-up and re-machining.

6. Box-art, instructions, packaging, decals, PE and other tasks are reduced to production steps, and all items integrated into a complete kit, ready for a ride on a big container ship.

(The ideal -- most efficient -- source of manufacture is one equipped to perform all injection-forming, printing, PE work, and other tasks in-house. Unfortunately, no such facility exists in America today).

So, as far as Moebius is concerned, the test-shots received are for validation of fit, part quality, and accuracy between the prototype and the model the assembled kit is supposed to represent. The customer examines the test-shots and either OK's the product, or generates a list identifying the changes that need to be made to the tooling. Sometimes a test shot is handed out as a review kit to help chum the waters.

Several months passed till I got my grubby hands on a test-shot. The box arrived at our door with a thump. But to me, it was the sound of the last round bell of a 12-round fight I was winning on points but wanted a knockout. Ellie brought the box into the shop, plopped it on a worktable and gave me one of those patented side-wise grins, and handed over the box-cutter. Show time! I paused a moment to reflect.

Wanna know what happens to a group-effort when the lead-man gets it wrong? Let's see hmmm... Think, Plan-9 From Outer Space. Think, Titanic. Think, Edsel. Think, Little Big-Horn. Think, Hindenberg. And think, I-53.

Bad Ju-Ju when the lead-man gets it wrong. I slit the top of the box from China...



Ellie unpacking our copy from the first set of 1/72 SKIPJACK test-shots out of China, forwarded to us from Moebius. This model submarine is big.

OK, truth in advertising time: Ellie's a little five-foot Filipino type, so the model appears larger than in real life. However, balancing that: I'm a six-foot-something, nasty, planet destroying, meat-eating, baby-seal-thumping, European type and this kit is big to ME! It's a big improvement over the mock-up. So far, so good...

With an example of the first test-shot series in hand (at last some honest to goodness polystyrene to fondle) I bounced the dimensions and form of the kit parts against my documentation -- the primary source being the excellent Greg Sharpe drawing. You see a hash-marked area atop the upper hull where, for some unknown reason, the initial tooling produced a 'dip' just aft of the after deck flat. First gig identified. There would be more.

The fillet between the sail and the long, skinny diesel exhaust fairing needed changing. Also, the leading edge and trailing edge of the sail were found to be too blunt. More items for the Chinese tool-and-die guys to fix.



A remarkable example of excellent tool design and execution is the propeller: The Chinese made a spot on reproduction of the propeller master I sent them; the rendering of it, in polystyrene above, is a perfect twin. Of particular note is capture of the complicated curves in a tool that avoids high draft angle.

The solution our tool-makers came up with was to make the majority of the hub and blades as a single part, with the base of the hub -- those areas under the blades -- as another part. These two sub-assemblies fit together with a surprisingly tight fit requiring little filling by the kit-assembler. I am most impressed with how the Chinese solved the propeller part fabrication problem.



One of the things I did to the mock-up was to add the frames within the diesel exhaust fairing. That feature, now incorporated in the test-shots, came out fine. However, the outboard portions of the ribs that project down -- and seen through the long-running limber slit between hull and fairing -- were flush with the outside of the fairing. They should have been indented to the surface of the fairing by about a sixteenth-of-an-inch. I marked them, and added this item to the list of tool modifications.

The after end of the diesel exhaust fairing was too blunt. I added that to the list'.



Bill Rogers, a fine scratch-builder, found a picture of an S5W powered submarine in dry-dock. You see a print of that in the above picture. The only good look I've seen of the gratings associated with that plants main condensers.

(My inspections of the same type gratings on my boat, the DANIEL WEBSTER, way back in the day, don't count as it was all done by feel. At one time I was one of the two boat Diver's who did security swims ball-valve greasing, and flange work in filthy, nearly opaque harbor water).

Pictured is a preliminary drawing to help me resolve the projected shape of the two types of main condenser gratings we needed PE parts for. The picture above was my only document to work from so several attempts were made till the things started to look right on graph paper. I knew the diameter of the gratings thanks to the BuShip General Arrangement drawing, so all I had to do was make the holes and bars across the face of the respective gratings look right. Once happy with the look, I produce a proper piece of art-work, five times the eventual part size, and send it to the Chinese for processing and manufacture of the PE kit parts.

Preparing the oversized artwork representing the SKIPJACK's MSW suction and discharge gratings. These went to China where they were scanned and that file used to produce the masking needed to make production stainless steel PE parts.

I'm old-school when it comes to drafting, no CAD for me -- you don't get totally involved in the project if you simply push a mouse around a drafting menu. No, dammit! In my world you get your hands dirty; you become intimate with the task; involve yourself physically with the work. That's the only way you can truly capture into you little brain all the nuances of the subject you're attempting to represent.

What the hell are we now, a bunch of mindless, automatons; only able to push buttons and respond to formulated stimuli?! I see no craft in computer aided drawing or machining! What's creative about punching up pre-ordained code? We don't have real Machinist's any more ... just over-paid bit-changers and chip sweepers.

(Picture me running in circles with my hair on fire!)

A quick look at just some of the photos used to help flesh out details as I worked the mock-up and checked the test-shots (yes, there were more than one set test-shots that ran the gauntlet -- we kept at it till things were as right as we could get them). All from my rather massive SKIPJACK folder. Research and adherence to the things research reveals is everything in this game.

I'm a reasonably skilled draftsman. Apprentice level, but adequate to my needs.

Unlike my Junior High-school peers -- the hoods, idiots, booger-pickers, and jock's -- who I had to rub shoulders with in shop class, I paid attention and enjoyed learning about and practicing the Crafts. And that training has served me to this day.

The first test-shot periscopes were elemental of form, not at all suitable for a model of the SKIPJACK's size. To help the Chinese work out better detailed periscope heads I prepared the above orthographic and isometric projections. The second test-shot came in with scope heads very close to what I illustrated. There were two types on the SKIPJACK. I've shown here the Type-15 'search periscope which featured a range-only radar antenna. Yeah, I'm a detail freak. I blame Ben Guenther!

Tappan Junior High School's shop class (mandatory for all boys) was divided into three sections: Wood-shop, Metal-shop, and Drafting. Wood-shop taught by a fellow class mates Dad, a rather handy fellow around the benches; Metal-shop taught by a tough little ex-Army booze-breath who really knew his stuff, and could weld anything to anything else; and the Drafting instructor was an old, skinny, well dressed, exacting, gentleman who took no *** from ANYONE (he managed, unlike other school staff, to keep the hoods in line).

How come I remember this ancient stuff but not my kid’s birthday?!....



Over the course of a three-month evaluation process we went through two test-shot cycles. The work above is from the second test-shot I got for examination. By this time, as two examples, we had refined the look of the two styrene optical periscopes and form of the PE main sea water suction and discharge gratings.

We all have Bill Rogers to thank for unearthing that photo of the MSW gratings. Nowhere else have I found a definitive look at those main condenser openings, unique to boats employing the S5W nuclear plant. Though the dry-dock picture is of a Polaris boat, it (as so many other American, and even one British, early nuclear powered submarines), like the SKIPJACK's, made use of the same S5W plant. So, it's a logical expectation that the MSW gratings seen on this Boomer were very similar to those on the SKIPJACK boats.

Anyone out there who can make a liar out of me? Let's see what you got!



Apprentice Rose inking out the decal artwork. There's something to be said for slave labor! I've found that staff productivity is directly proportional to the voltage applied. As the SKIPJACK work turned into a grind I noted that my Granddaughter had been getting into manga sketching big-time and was showing some talent. So, never one to waste an asset, I dragooned her into the shop to help me with the decal and PE graphics. She told me that she could punch it all out on a computer. Hell, no, I said. Regardless, she snuck out when I was involved in something else, got to the computer and took it as far as finding the correct fonts somewhere in digital-land. I put a screeching halt to that!

Here, recaptured, Rose -- an ankle chained to a leg of the desk -- is inking the decal artwork. 'What's with the attitude, Rose!? ... give us a smile!"

As with PE art-work it’s a good practice to render the decal art-work several times the eventual size of the finished product (PE or decal contact negative/positive). As the artwork images are reduced in the process camera -- or, these days, scanner -- image density increases and becomes 'tighter'. Rose is working to a five-to-one ratio if I remember correctly.

  • Member since
    September 2006
Posted by Fairseas on Wednesday, October 31, 2012 6:08 PM

Here you go folks! All the juicy details on how Moebius' latest kit came to be in David Meriman's well-known cabal reports. In this first installment, David offers some background on Moebius' new 1:72 Skipjack & how it came to be.

Stay tuned, there's more to come.

Development of the Moebius Models 1/72 SKIPJACK Model Kit and its Conversion to R/C Operation, part-1

by David Meriman

A Report to the Cabal



(A note to my long-time Cabal Report readers: this multi-part Report is the initial draft of what will become a proper instruction manual used by those wishing to convert the Moebius Models 1/72 SKIPJACK plastic model kit into a fully capable r/c model submarine using the Caswell-Merriman fittings kit. So, please don't be put off by the later Joe Friday, by-the-numbers style of writing. And if you are put off, just hit the 'delete' key when these e-mails hit your in-box. And of course, all you have to do is shoot me an e-mail if you want off the Cabal Report mailing list).

As you get older you start to compile a 'bucket-list', those things you want to accomplish before you die. I made mine decades ago -- I tend to be a forward thinking type. Near the top of the list, right next to 'marry a Filipino Princess', was to help create a well detailed, competently researched (hear that, Lindberg?!), and successful traditional plastic model kit. That promise to myself made long before I became the poster-boy of American r/c model submarining; at the time I prepared the list I had little appreciated that an injection-formed, polystyrene plastic model submarine could be successfully converted to r/c operation.

Decades after formulation of the bucket-list the two interests -- plastic model kit production and r/c submarine building and driving -- intersected as I worked with Moebius to produce the 1/72 SKIPJACK kit while producing product for the r/c submarine hobby with Caswell.

Moebius Models has just released a plastic model kit of a 1/72 SKIPJACK class Submarine. I was the lead man on that project. A good history on the real boats can be had here, http://en.wikipedia.org/wiki/Skipjack_class_submarine

About two years ago I e-mailed the Moebius Product Development guy, Dave Metzner, suggesting they produce a 1/96 scale kit of the SKIPJACK class submarine. I figured, what the hell, the worst thing he will say is 'no'. Nope. The only thing he said was, "Too small. How about 1/72?" Holy-***! Hell yeah!

And the rest, as they say, is history. The guys at Moebius are constantly pestered by fan-boys to make kits of some off-the-wall-never-get-your-money-back subjects. I was mindful of that and respectful of their time and resources. On the other hand, I'm not some no-body off the street. My name -- and more significantly, my work -- proceeded me; I got my hearing because of who I am (pisses you off, don't it) and what I've done; I've paid my dues in this game and cashed in occasionally, like this job with Moebius.



This is the contents of the kit: an excellent set of Bob Plant instructions, complete with a painting guide; decal markings for all six boats of the class; clear parts for the four dead-lights and stern light; sail; appendages; propeller; and a complete array of optical and electronic periscopes antennas, masts, including a well detail snorkel induction-exhaust mast.

The hull comes in quarters. Two bow halves and two stern halves -- the bow and stern assembles joining at a very robust radial flange near the hull mid-point. The hull (and this was no mistake) lends itself to being built as an upper and lower unit that can be opened up if the kit-assembler wishes to r/c this model.



Just a sample page from the outstanding Bob Plant instruction booklet that accompanies the 1/72 SKIPJACK kit. This is a far cry from the bare-bones exploded-view sketch provided with earlier Moebius kits. A perfect balance of illustrations and text, in plain English. No 'chinglish' here! We all worked to keep the nomenclature of parts identified in the instruction on a pare with the descriptive words used by those who made and operated the real thing.



The man responsible for the box-art and instructions (and to no small degree the decal sheet) is Bob Plant. He's Moebius' 'Art' guy. I can not heap enough praise on the job he did on the instructions. Bob's work is in the tradition of the kits produced during the golden-era of plastic models kits, the early 60's to the mid-70's. If, after cracking the box on the Moebius Models 1/72 SKIPJACK kit you feel sweeping over you the joy you first felt as a kid doing this stuff it is due to Bob's capture of the look and feel of the old, good-old-days.

The box art on the first issue of this kit is a very well photo-shopped melding of a Dave Metzner build-up and Bob's dramatization of a boat underway on the surface. If there is a follow-up issuing of the kit, you all are in for a real treat -- the new box art will feature a dry-dock scene from a noted kit illustrator. Stay tuned on that.



The Moebius team worked long and hard to get the details right. An example are the main sea-water (MSW) suction and discharge gratings -- on the kit rendered as photo-etched (PE) stainless steel parts. Getting the attack and night periscope right was a battle. I spent several days researching the type-2 and type-15 scopes used by most of the boats of the SKIPJACK class. We didn't get it right till the second test-shot. This demonstrates the uncomplaining willingness of Frank, Bob, and Dave to get the kit contents right before committing to production.



The Chinese (through no fault of they're own) did not get it right the first time. The mock-up, grown in a 3D printer, was severally flawed -- the fault was mine, there were several pardoxes of form presented between the documents and scanning models I provided them. And even after making physical corrections to the mock up, once it was scanned, and that file used to cut the initial tooling, the test shots revealed the need for further refinements. We went through two test-shot cycles before all flaws were identified and corrected. Only then did Dave give the green light to start series production.

More on the work done to correct the mock-up and test-shot flaws later. Above are some of the orthographic and isometric drawings I prepared for the Chinese to help them get the scope heads right.



Nearly a decade before the Moebius project I had been operating a 1/72 SKIPJACK r/c model submarine -- a fiberglass (GRP) and resin kit produced by Scale Shipyard. The kit is one of the best quality articles that company produces -- the accuracy of form and detailing is high; the parts were warp free and no bubbles to fill. Nice kit!

However, GRP-resin kits are not for the common kit-assembler; they require a great deal of talent to clean up, lay-out, assemble properly, and to get operational. I know of only a hand-full of these kits out there working today.

Above you see my Scale Shipyard 1/72 SKIPJACK tooling around the fresh-water pond at Norfolk's Nauticus museum where our club, the Elite Fleet, puts on shows during the summer months.

The Scale Shipyard SKIPJACK's a dead ringer for the Moebius kit. It demonstrated to me that a mass-produced plastic model kit, if built robust enough, would be the perfect hull for the first-time r/c submarine driver: Maneuverable, fast, and lacking the brittle little bits and pieces of a WW-2 era submarine that invariably break off during handling and use; the SKIPJACK is the perfect r/c submarine for those with itchy transmitter fingers. Believe me, I know!



The SKIPJACK (all of my SKIPJACK's) is operated as a wet-type r/c model submarine: the hull and sail are free-flooding structures. The propulsion, control, and ballast sub-system elements are all contained within a single 3.5" diameter Lexan cylinder. That removable cylinder forming the brawn, brains, and displacement changing mechanisms that animate the model.



How many of you old-timer's remember this kit as a kid? How many of you stuck a motor in this 13" model and saw it chase across the pool only to smash into the other side with a sickening 'crunch'? Come on! I can't be the only one to have done this?

Oh ...you were the cherry-bomb type. Sorry.



Electronics have matured to the point where even that small Aurora SKIPJACK can be r/c'ed! Caswell Inc. provides a fittings kit to convert the little model to r/c and they also sell the Sub-driver and devices needed to complete the job. http://www.sub-driver.com/models/submarine-models/uss-skipjack-submarine/the-revell-skipjack-submarine-fittings-kit.html



And our 1/96 scale, GRP-resin-metal SKIPJACK kit. This was the size I first recommended to Moebius, but they preferred a larger, 1/72, sized kit -- something that would be in scale with the excellent Revell 1/72 Type-7 and GATO models. A good call in my opinion.



Prior to my assembly and use of the Scale Shipyard 1/72 SKIPJACK. I had produced and marketed a 1/96 scale GRP-resin-metal kit of the SKIPJACK which I've been selling now for nearly twenty-five years. Of course I've been driving this version of the Beast around forever! I've even produced r/c versions of the little Aurora-Monogram-Revell 1/230 SKIPJACK -- a model measuring only 13" in length. The 1/230 and 1/96 scale SKIPJACKS pictured above.

Yeah ... I'm Mr. SKIPJACK!

  • Member since
    September 2010
Posted by modelnut on Wednesday, October 17, 2012 11:43 AM

That's the one.

- Leelan

  • Member since
    March 2004
  • From: Spartanburg, SC
Posted by subfixer on Wednesday, October 17, 2012 11:36 AM

You are referring to the circular area aft of the cleats? You are correct in calling it ficticious, the reactor compartment is located closer to the sail. But it would still be cool for kids.Cool

I'm from the government and I'm here to help.

  • Member since
    September 2010
Posted by modelnut on Wednesday, October 17, 2012 11:00 AM

Look two weld lines aft of the sail join. There is the infamous and ficticious reactor access hatch put there for kids to see a "real" submarine's nuclear reactor. Most adult builders putty it over and forget it was ever there.

- Leelan

  • Member since
    March 2004
  • From: Spartanburg, SC
Posted by subfixer on Wednesday, October 17, 2012 8:19 AM

modelnut

 Funny thing. I don't see the reactor hatch anywhere! Sad

 

What reactor hatch are you referring to?  When major access to the reactor or its components is required, an access cut in the hull is made. There are access hatches (actually doors) to allow personnel to pass through the reactor compartment bulkheads but they are located inside the ship.

I'm from the government and I'm here to help.

  • Member since
    September 2010
Posted by modelnut on Wednesday, October 17, 2012 7:40 AM

I have the kit and she is HUGE. But so much more detailed and accurate than the old Aurora 13-inch kit that we all bought long ago. Funny thing. I don't see the reactor hatch anywhere! Sad

I am waiting for the fittings kit. But I have the hull and sail taped together and sitting on my shelf.

Here's another look at the kit:

I am currently working on the base while I wait for the fittings.

- Leelan

  • Member since
    January 2006
  • From: NW Washington
Posted by dirkpitt77 on Tuesday, October 16, 2012 9:25 PM

You know, the first I'd heard of this kit was just the other day when I saw it on Squadron's home page. I guess it's been out for a few months already? I can't believe I hadn't heard of it before now. Would love to have one but I don't know where I'd put it.

    "Some say the alien didn't die in the crash.  It survived and drank whiskey and played poker with the locals 'til the Texas Rangers caught wind of it and shot it dead."

  • Member since
    September 2006
Moebius' 1:72 Skipjack
Posted by Fairseas on Tuesday, October 16, 2012 4:44 PM

For those who haven't gotten their hands on Moebius' latest release, here are some photos of the actual kit before David Meriman ripped the box apart before commencing his build. Not a bad piece of kit if you ask me. :thumbs_up_1:

He's completed his RC conversion kit and will be starting on a detail figure kit for the static builders.

















JOIN OUR COMMUNITY!

Our community is FREE to join. To participate you must either login or register for an account.

SEARCH FORUMS
FREE NEWSLETTER
By signing up you may also receive reader surveys and occasional special offers. We do not sell, rent or trade our email lists. View our Privacy Policy.